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A simple regression model

x : unknown function parameters
bi = hxu (az) a; : input
b, : response / output

b A % w
|
Linear model: — ... +
||
nxp

b; = (a;,x") + w;

Applications: Compressive sensing, machine learning, theoretical computer science...
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A simple regression model and many practical questions

x : unknown function parameters
o ol ) a; : input
bl - <al’ X > +w; b, : response / output
w; : perturbations / noise

o Estimation: find x* to minimize ||x* — x|
o Prediction: find x* to minimize L ((ai,x*>, (ai,xh>)

o Decision: choose a; for estimation or prediction

A difficult estimation challenge when n < p:

Nullspace (null) of A: x4+ v — b, VYo cnull(A)

o Needle in a haystack: We need additional information on x!
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A natural signal model

Definition (s-sparse vector)

A vector x € RP is s-sparse if it has at most s
non-zero entries.

RP

<

Sparse representations

o xU: sparse transform coefficients

o Basis representations ¥ € RPXP
» Wavelets, DCT, ...

o Frame representations ¥ € R™*P, m > p

» Gabor, curvelets, shearlets, ...

o Other dictionary representations...
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Sparse representations strike back!

b

obeR™ AER"™P, andn<p
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Sparse representations strike back!

b A
B

obeR” AeR"P andn<p

K
x_ﬂ'

NN EEEEE EENEEE

oW c RPXP, xf € RP, and ||x%o <s<n
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Sparse representations strike back!

x_ﬂ_

b A

[HEE EEEEE EESEEE

ob€R”?, A €R"P, and x7 €RP, and ||x|lp <s<n<p
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Sparse representations strike back!

b A X"
— i -
||
nx1 nxs sx1

Observations: o The matrix A effectively becomes overcomplete.

o We could solve for x% if we knew the location of the non-zero entries of x".
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Enter sparsity

A combinatorial approach for estimating x? from b = Ax" + w

We may consider the estimator with the least number of non-zero entries. That is,

x* € arg min {||x|o:||b— Ax]|2 <k} (Po)
XERP

with some x > 0. If kK = || w ||2, then x! is a feasible solution.
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Enter sparsity

A combinatorial approach for estimating x? from b = Ax" + w

We may consider the estimator with the least number of non-zero entries. That is,

x* € arg min {||x|lo: || b— Ax|2 <k} (Po)
xXERP

with some x > 0. If kK = || w ||2, then x! is a feasible solution.

o Po has the following characteristics:
> sample complexity: O(s) || x ||o over the unit £oo-ball
> computational effort: NP-Hard

> stability: No

[Ixllo
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Enter sparsity

A combinatorial approach for estimating x? from b = Ax" + w

We may consider the estimator with the least number of non-zero entries. That is,

x* € arg min {||x|lo: || b— Ax|2 <k} (Po)
xXERP

with some x > 0. If kK = || w ||2, then x! is a feasible solution.

o Po has the following characteristics:
> sample complexity: O(s) ||x |1 is the convex envelope of || x||o
> computational effort: NP-Hard

> stability: No

o Tightest convex relaxation:

> [|x||g* is the biconjugate

> i.e., Fenchel conjugate of Fenchel conjugate

Tixlh
o Fenchel conjugate:

. . . . . h _ p
> [ (¥) = SWsedom(f) xTy — f(x). A technicality: Restrict x% € [—1, 1]P.
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The role of convexity

A convex candidate solution for b = Ax? + w
x* € arg min {|x 1+ b~ Axl2 < [[w |2, xllo0 < 1}. (SOCP)
xX

Theorem (A model recovery guarantee [8])

Let A € R"*P be a matrix of i.i.d. Gaussian random variables with zero mean and variances 1/n. For any t > 0
with probability at least 1 — 6 exp (—t2/26), we have

Py, b
It — [z < 24/2slog(L) + 3s
T | Vn— /2slog(B) + 25—t

| wll2:=e, when|x"o<s.

Observations: o perfect recovery (i.e., € = 0) with n > 2slog(2) + %s whp when w = 0.

o e-accurate solution in k = O (\/Qp +1 log(%)) iterations via IPM with a total complexity of
O(n?p!d log(%)) with each iteration requiring the solution of a structured n x 2p linear system.
o robust to noise.
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A Time-Data conundrum — |

A computational dogma

Running time of a learning algorithm increases with the size of the data.
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A Time-Data conundrum — |

A computational dogma

Running time of a learning algorithm increases with the size of the data.

o Misaligned goals in the statistical and optimization disciplines

Discipline Goal Metric
Optimization | reaching numerical e-accuracy | [[xF — x*[| <e
Statistics learning e-accurate model [x* —xF[[<e

o Main issue: ¢ and £ are NOT the same but should be treated jointly!
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A Time-Data conundrum — Il

A stylized formalization of the time-data tradeoff

The goals of optimization and statistical modeling are tightly connected:
IxF = < x*—xt] o+ It X

learning quality €: needs “time” ¢t(k) &: needs “data"n

true model in RP
*: statistical model estimate
numerical solution at iteration k

o As the number of data samples n increases with a fixed optimization formulation,
x* € argmingerp {||x 1 : | b— Ax|l2 < || w2, [Ix]lc <1}

> numerical methods take longer time t to reach e-accuracy
> e.g., per-iteration time to solve an n X 2p linear system

> statistical model estimates £ become more precise when ||w|2 = O(/n)

24/2sl0g(2)+ 55
[lw

Vn— \/2510g(%)+%s—t

2, with probability 1 — 6exp(—t2/26).

> o=
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A Time-Data conundrum — Il
A stylized formalization of the time-data tradeoff

The goals of optimization and statistical modeling are tightly connected:

[F = x| < % —xt] XX

<&(t(k),n) €: needs “time” t(k)  e: needs “data"n

xU: true model in RP
x*: statistical model estimate
xk: numerical solution at iteration k

E(t(k),n):  actual learning quality at time t(k) with n samples

o As the number of data samples n increases with a fixed optimization formulation,

x* € argmingerr {[[x[1: [ — Ax|l2 < w2, Ix[lec <1}
> numerical methods take longer time t to reach e-accuracy
> e.g., per-iteration time to solve an n X 2p linear system

> statistical model estimates £ become more precise when ||w|2 = O(/n)

24/2sl0g(2)+ 55

Vn— \/2510g(%)+%s—t

>

€= llw |

2, with probability 1 — 6exp(—t2/26).

“Time” effort has significant diminishing returns on ¢ in the underdetermined case* (cf., [6, 3, 9, 5, 4])

* “Data” effort also exhibits a similar behavior in the overdetermined case when a signal prior is used due to noise!

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 23



Data as a computational resource

A stylized formalization of the time-data tradeoff

The goals of optimization and statistical modeling are tightly connected:

[ — x| < D —x* ) + It =]
~———

<&(t,n) €: needs “time"” ¢t  e: needs “data"n
x1: true model in RP
&(t,n):  actual model precision at time ¢ with n samples
t
Rest of the lecture: o estimator formulation and sample complexity

o a “continuous” time-data tradeoff

o a different, algorithmic tradeoff with SGD

- computational lowerbound

Nstatistical lowerbound n
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Sample complexity analysis

Convex optimization formulation for the estimator

x* € arg min {f(x) : b= Ax},
xERP

where f : R? — RU {—o00, o0} is a convex function.

Sample complexity
Assume that A € R™*? is a matrix of independent identically distributed (i.i.d.) Gaussian random variables.

What is the minimum number of samples n such that x* = x with high probability?
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Characterization of the error vector

x* € arg min {f(x) : b = Ax}
xERP

Define the error vector § := x* — x1.

{x:b=Ax}

{8: f(xF+0) < f(x1)}
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Descent cone

Definition (Descent cone)

Let f : RP — RU {—o00,00} be a proper lower-semicontinuous function. The descent cone of f at x is defined
as

Df(xh) := cone ({5 f(xP+6) < f(xh)}) .

/‘ Dy (Xh)

{x:f(x) < F(x9)}
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Condition for exact recovery in the noiseless case

Proposition (Condition for exact recovery)

We have successful recovery, i.e., § := x* — x = 0 with x* € argminyecgr {f(x) : b = Ax}, if and only if
null(A) N Dy (x?) = {0}.

null (A)
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Condition for exact recovery in the noiseless case

Proposition (Condition for exact recovery)

We have successful recovery, i.e., § := x* — x = 0 with x* € argminyecgr {f(x) : b = Ax}, if and only if
null(A) N Dy (x?) = {0}.

{x: f(x) < f(x5)} / R
null (A)
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Statistical dimension and approximate kinematic formula
Now we have

P{x* =x"} =P {null(A) N Dy(x) = {0} } .

Definition (Statistical dimension [1])
Let C C RP be a closed convex cone. The statistical dimension of C is defined as

d(C) := E [|| proje(g) 3] -

Theorem (Approximate kinematic formula [1])

Let A € R"*P, n < p, be a matrix of i.i.d. standard Gaussian random variables, and let C C RP be a closed
convex cone. Let n € (0,1) Then

n>dC)+cy/p = P{null(A)NC={0}}>1—-n;
n<dlC)—cy+/p = P{mull(A)nC={0}}<mn,

where ¢, := +/8log(4/n).

1 The statistical dimension is closely related to the Gaussian complexity [2], Gaussian width [7], and Gaussian squared complexity [6].
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Probability of exact recovery

Corollary
For any n € (0,1),

n>dDp(x") +en/p = P{x*=x"}>1-u
nSd(Df(xh))fcn\/;E = P{x*:xh}gr],

where ¢y 1= /8log(4/n).

o There is a phase transition at n ~ d(Dy(x%)).

Examples ([1])
o Let f(x) := || x |1, and let x7 € RP be s-sparse. Then d(Dy(x4)) < 2slog(p/s) + (5/4)s.
o Let f(x) := || X ||, and let X% € RPXP of rank r. Then d(Dy(x%)) < 3r(2p — 7).
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Smoothing increases the statistical dimension

Key properties of the statistical dimension [1]

o The statistical dimension is invariant under unitary transformations (rotations).
o Let C; and C2 be closed convex cones. If C; C Ca, then d(C1) < d(C2).

The larger the statistical dimension is, the more number of observations is required.

F60) = Il [
Fuls) =l + 5 Il {x: £x) < F0)}

{x: fulx) < ()}

\ ~
Dy (x") \\efu (x°)

N
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Numerical results for the statistical dimension and p(n)

Statistical dimension of Dy, (x5)

Maximal smoothing parameter
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Smoothing decreases the computational cost

o Consider the estimator,

x* € arg min {fu(x) :b = AX, |[|%]lc0 < ||xh\|oo} , M€ [0,00).
XERP

Proposition

Let > 0 and f(x) = ||x||1. Consider solving (1) with a primal-dual method as in [4, 5]. The output after the
k-th iteration, x*, satisfies

ok pr(A) [p(1+ plx* lo)2 +(1=p)] 1
[|x* —x" ]2 < o —
pk pk

)

Pkl

where p := s/p, s being the number of non-zero entries in x*, and k(A) denotes the restricted condition
number of A.

Observations: o When p < 1, the number of iterations k to achieve the required precision decreases.

o In fact, we need 1/(ue) iterations to have an error bound || x* — x* ||3 < ¢ for a fixed € > 0.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 23



Time-data tradeoff

o Define the maximal smoothing parameter
w(n) == argm;nO( {/4 0 d (Dfu (xh)) < n} .
n
o Consider the “conservative” estimator in probability,

x* € arg mm {fﬂ( )‘ll:%u(”) b= Ax}‘

Corollary
Let p:= s/p < 1. Then we have, with high probability, x* = x, and

1
[ x% = x¥ |2 o .
w(n)k

—xF ||2 < & for a fixed € > 0, it suffices to choose
1
k=0 (—) .
w(n)
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A numerical result for the time-data tradeoff

Number of iterations vs. sample size .107 Computational complexity vs. sample size
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