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A simple regression model

bi = hx♮ (ai)
x♮ : unknown function parameters
ai : input
bi : response / output

Linear model:

b A x♮ w

n × p

bi = ⟨ai, x♮⟩ + wi

Applications: Compressive sensing, machine learning, theoretical computer science...
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A simple regression model and many practical questions

bi = ⟨ai, x♮⟩ + wi

x♮ : unknown function parameters
ai : input
bi : response / output
wi : perturbations / noise

◦ Estimation: find x⋆ to minimize ∥x⋆ − x♮∥

◦ Prediction: find x⋆ to minimize L
(

⟨ai, x⋆⟩, ⟨ai, x♮⟩
)

◦ Decision: choose ai for estimation or prediction b = Ax
x1

x2

x3

Thursday, June 19, 14

A difficult estimation challenge when n < p:

Nullspace (null) of A: x♮ + v → b, ∀v ∈ null(A)

◦ Needle in a haystack: We need additional information on x♮!
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A natural signal model

Definition (s-sparse vector)
A vector x ∈ Rp is s-sparse if it has at most s
non-zero entries.

Rp

x\

Sparse representations
◦ x♮: sparse transform coefficients
◦ Basis representations Ψ ∈ Rp×p

▶ Wavelets, DCT, ...
◦ Frame representations Ψ ∈ Rm×p, m > p

▶ Gabor, curvelets, shearlets, ...
◦ Other dictionary representations...

=y\ x\ 
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Sparse representations strike back!

b Ã y\

◦ b ∈ Rn, Ã ∈ Rn×p, and n < p

Observations: ◦ The matrix A effectively becomes overcomplete.
◦ We could solve for x♮ if we knew the location of the non-zero entries of x♮.
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Sparse representations strike back!

b Ã x\ 

◦ b ∈ Rn, Ã ∈ Rn×p, and n < p

◦ Ψ ∈ Rp×p, x♮ ∈ Rp, and ∥x♮∥0 ≤ s < n

Observations: ◦ The matrix A effectively becomes overcomplete.
◦ We could solve for x♮ if we knew the location of the non-zero entries of x♮.
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Sparse representations strike back!

b A x\

n × 1 n × s s × 1

Observations: ◦ The matrix A effectively becomes overcomplete.
◦ We could solve for x♮ if we knew the location of the non-zero entries of x♮.
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Enter sparsity

A combinatorial approach for estimating x♮ from b = Ax♮ + w
We may consider the estimator with the least number of non-zero entries. That is,

x⋆ ∈ arg min
x∈Rp

{∥ x ∥0 : ∥ b − Ax ∥2 ≤ κ} (P0)

with some κ ≥ 0. If κ = ∥ w ∥2, then x♮ is a feasible solution.

◦ P0 has the following characteristics:
▶ sample complexity: O(s)
▶ computational effort: NP-Hard
▶ stability: No

◦ Tightest convex relaxation:

▶ ∥ x ∥∗∗
0 is the biconjugate

▶ i.e., Fenchel conjugate of Fenchel conjugate

◦ Fenchel conjugate:
▶ f∗(y) := supx:dom(f) xT y − f(x).

A technicality: Restrict x♮ ∈ [−1, 1]p.
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{∥ x ∥0 : ∥ b − Ax ∥2 ≤ κ} (P0)

with some κ ≥ 0. If κ = ∥ w ∥2, then x♮ is a feasible solution.

◦ P0 has the following characteristics:
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◦ Tightest convex relaxation:

▶ ∥ x ∥∗∗
0 is the biconjugate

▶ i.e., Fenchel conjugate of Fenchel conjugate

◦ Fenchel conjugate:
▶ f∗(y) := supx:dom(f) xT y − f(x).

∥ x ∥0 over the unit ℓ∞-ball

A technicality: Restrict x♮ ∈ [−1, 1]p.
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Enter sparsity

A combinatorial approach for estimating x♮ from b = Ax♮ + w
We may consider the estimator with the least number of non-zero entries. That is,

x⋆ ∈ arg min
x∈Rp

{∥ x ∥0 : ∥ b − Ax ∥2 ≤ κ} (P0)

with some κ ≥ 0. If κ = ∥ w ∥2, then x♮ is a feasible solution.

◦ P0 has the following characteristics:
▶ sample complexity: O(s)
▶ computational effort: NP-Hard
▶ stability: No

◦ Tightest convex relaxation:

▶ ∥ x ∥∗∗
0 is the biconjugate

▶ i.e., Fenchel conjugate of Fenchel conjugate

◦ Fenchel conjugate:
▶ f∗(y) := supx:dom(f) xT y − f(x).

∥ x ∥1 is the convex envelope of ∥ x ∥0

A technicality: Restrict x♮ ∈ [−1, 1]p.
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The role of convexity

A convex candidate solution for b = Ax♮ + w

x⋆ ∈ arg min
x∈Rp

{∥ x ∥1 : ∥ b − Ax ∥2 ≤ ∥ w ∥2, ∥x∥∞ ≤ 1} . (SOCP)

Theorem (A model recovery guarantee [8])
Let A ∈ Rn×p be a matrix of i.i.d. Gaussian random variables with zero mean and variances 1/n. For any t > 0
with probability at least 1 − 6 exp

(
−t2/26

)
, we have

∥ x⋆ − x♮ ∥2 ≤

[
2

√
2s log( p

s
) + 5

4 s
√

n −
√

2s log( p
s

) + 5
4 s − t

]
∥ w ∥2 B ε, when ∥x♮∥0 ≤ s.

Observations: ◦ perfect recovery (i.e., ε = 0) with n ≥ 2s log( p
s

) + 5
4 s whp when w = 0.

◦ ϵ-accurate solution in k = O
( √

2p + 1 log( 1
ϵ

)
)

iterations via IPM with a total complexity of
O(n2p1.5 log( 1

ϵ
)) with each iteration requiring the solution of a structured n × 2p linear system.

◦ robust to noise.
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A Time-Data conundrum — I

A computational dogma
Running time of a learning algorithm increases with the size of the data.

◦ Misaligned goals in the statistical and optimization disciplines

Discipline Goal Metric
Optimization reaching numerical ϵ-accuracy ∥xk − x⋆∥ ≤ ϵ

Statistics learning ε-accurate model ∥x⋆ − x♮∥ ≤ ε

◦ Main issue: ϵ and ε are NOT the same but should be treated jointly!
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A Time-Data conundrum — II
A stylized formalization of the time-data tradeoff
The goals of optimization and statistical modeling are tightly connected:

∥xk − x♮∥︸         ︷︷         ︸
learning quality

≤ ∥xk − x⋆∥︸         ︷︷         ︸
ϵ: needs “time” t(k)

+ ∥x⋆ − x♮∥︸         ︷︷         ︸
ε: needs “data”n

,

x♮: true model in Rp

x⋆: statistical model estimate
xk: numerical solution at iteration k

ε̄(t(k), n): actual learning quality at time t(k) with n samples

◦ As the number of data samples n increases with a fixed optimization formulation,
x⋆ ∈ arg minx∈Rp {∥ x ∥1 : ∥ b − Ax ∥2 ≤ ∥ w ∥2, ∥x∥∞ ≤ 1}

▶ numerical methods take longer time t to reach ϵ-accuracy
▶ e.g., per-iteration time to solve an n × 2p linear system

▶ statistical model estimates ε become more precise when ∥w∥2 = O(
√

n)

▶ ε =
2
√

2s log( p
s

)+ 5
4 s

√
n−

√
2s log( p

s
)+ 5

4 s−t

∥ w ∥2, with probability 1 − 6exp(−t2/26).

“Time” effort has significant diminishing returns on ε in the underdetermined case∗ (cf., [6, 3, 9, 5, 4])
∗ “Data” effort also exhibits a similar behavior in the overdetermined case when a signal prior is used due to noise!
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Data as a computational resource

A stylized formalization of the time-data tradeoff
The goals of optimization and statistical modeling are tightly connected:

∥xk(t) − x♮∥︸             ︷︷             ︸
≤ε̄(t,n)

≤ ∥xk(t) − x⋆∥︸             ︷︷             ︸
ϵ: needs “time” t

+ ∥x⋆ − x♮∥︸         ︷︷         ︸
ε: needs “data”n

,

x♮: true model in Rp

ε̄(t, n): actual model precision at time t with n samples

Rest of the lecture: ◦ estimator formulation and sample complexity

◦ a “continuous” time-data tradeoff

◦ a different, algorithmic tradeoff with SGD "̄(t, n)
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Sample complexity analysis

Convex optimization formulation for the estimator

x⋆ ∈ arg min
x∈Rp

{f(x) : b = Ax} ,

where f : Rp → R ∪ {−∞, ∞} is a convex function.

Sample complexity
Assume that A ∈ Rn×p is a matrix of independent identically distributed (i.i.d.) Gaussian random variables.

What is the minimum number of samples n such that x⋆ = x♮ with high probability?
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Characterization of the error vector

x⋆ ∈ arg min
x∈Rp

{f(x) : b = Ax}

Define the error vector δ := x⋆ − x♮.

x\

�
x : f(x)  f(x\)

 

{x : b = Ax}

x?
null(A)

�

�

�
� : f(x\ + �)  f(x\)
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Descent cone

Definition (Descent cone)
Let f : Rp → R ∪ {−∞, ∞} be a proper lower-semicontinuous function. The descent cone of f at x♮ is defined
as

Df (x♮) := cone
({

δ : f(x♮ + δ) ≤ f(x♮)
})

.

x\

Df (x\)

�
x : f(x)  f(x\)
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Condition for exact recovery in the noiseless case

Proposition (Condition for exact recovery)
We have successful recovery, i.e., δ := x⋆ − x♮ = 0 with x⋆ ∈ arg minx∈Rp {f(x) : b = Ax}, if and only if
null(A) ∩ Df (x♮) = {0}.

null (A)

x̃

x\

�
x : f(x)  f(x\)

 

Df (x\)
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Condition for exact recovery in the noiseless case

Proposition (Condition for exact recovery)
We have successful recovery, i.e., δ := x⋆ − x♮ = 0 with x⋆ ∈ arg minx∈Rp {f(x) : b = Ax}, if and only if
null(A) ∩ Df (x♮) = {0}.

x\

null (A)

b = Ax\

xx � x\

�
x : f(x)  f(x\)

 

Df (x\)
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Statistical dimension and approximate kinematic formula

Now we have
P

{
x⋆ = x♮

}
= P

{
null(A) ∩ Df (x♮) = {0}

}
.

Definition (Statistical dimension [1]1)
Let C ⊆ Rp be a closed convex cone. The statistical dimension of C is defined as

d(C) := E
[
∥ projC(g) ∥2

2
]

.

Theorem (Approximate kinematic formula [1])
Let A ∈ Rn×p, n < p, be a matrix of i.i.d. standard Gaussian random variables, and let C ⊆ Rp be a closed
convex cone. Let η ∈ (0, 1) Then

n ≥ d(C) + cη
√

p ⇒ P {null(A) ∩ C = {0}} ≥ 1 − η;
n ≤ d(C) − cη

√
p ⇒ P {null(A) ∩ C = {0}} ≤ η,

where cη :=
√

8 log(4/η).

1The statistical dimension is closely related to the Gaussian complexity [2], Gaussian width [7], and Gaussian squared complexity [6].
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Probability of exact recovery

Corollary
For any η ∈ (0, 1),

n ≥ d(Df (x♮)) + cη
√

p ⇒ P
{

x⋆ = x♮
}

≥ 1 − η;

n ≤ d(Df (x♮)) − cη
√

p ⇒ P
{

x⋆ = x♮
}

≤ η,

where cη :=
√

8 log(4/η).

◦ There is a phase transition at n ≈ d(Df (x♮)).

Examples ([1])
◦ Let f(x) := ∥ x ∥1, and let x♮ ∈ Rp be s-sparse. Then d(Df (x♮)) ≤ 2s log(p/s) + (5/4)s.
◦ Let f(x) := ∥ X ∥∗, and let X♮ ∈ Rp×p of rank r. Then d(Df (x♮)) ≤ 3r(2p − r).
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Smoothing increases the statistical dimension

Key properties of the statistical dimension [1]
◦ The statistical dimension is invariant under unitary transformations (rotations).
◦ Let C1 and C2 be closed convex cones. If C1 ⊆ C2, then d(C1) ≤ d(C2).

The larger the statistical dimension is, the more number of observations is required.

x\

Df (x\) Dfµ
(x\)

�
x : f(x)  f(x\)

 

�
x : fµ(x)  fµ(x\)

 

f(x) := kxk1 ,

fµ(x) := kxk1 +
µ

2
kxk2

2 .
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Numerical results for the statistical dimension and µ(n)
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Smoothing decreases the computational cost

◦ Consider the estimator,

x⋆ ∈ arg min
x∈Rp

{
fµ(x) : b = Ax, ∥x∥∞ ≤ ∥x♮∥∞

}
, µ ∈ [0, ∞).

Proposition
Let µ > 0 and f(x) = ∥x∥1. Consider solving (1) with a primal-dual method as in [4, 5]. The output after the
k-th iteration, xk, satisfies

∥ x⋆ − xk ∥2 ≤
4pκ(A)

[
ρ(1 + µ∥ x⋆ ∥∞)2 + (1 − ρ)

]
µk

∝
1

µk

∣∣∣
ρ≪1

,

where ρ := s/p, s being the number of non-zero entries in x⋆, and κ(A) denotes the restricted condition
number of A.

Observations: ◦ When ρ ≪ 1, the number of iterations k to achieve the required precision decreases.

◦ In fact, we need 1/(µε) iterations to have an error bound ∥ x⋆ − xk ∥2 ≤ ε for a fixed ϵ > 0.
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Time-data tradeoff
◦ Define the maximal smoothing parameter

µ(n) := arg max
µ>0

{
µ : d

(
Dfµ (x♮)

)
≤ n

}
.

◦ Consider the “conservative” estimator in probability,

x⋆ ∈ arg min
x∈Rp

{
fµ(x)|µ= 1

4 µ(n) : b = Ax
}

.

Corollary
Let ρ := s/p ≪ 1. Then we have, with high probability, x⋆ = x♮, and

∥ x♮ − xk ∥2 ∝
1

µ(n)k
.

Therefore, to achieve the error bound, ∥ x♮ − xk ∥2 ≤ ε for a fixed ε > 0, it suffices to choose

k = O

( 1
µ(n)

)
.
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A numerical result for the time-data tradeoff
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