

# Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher  
[volkan.cevher@epfl.ch](mailto:volkan.cevher@epfl.ch)

*Supplementary Material: Time-Data tradeoff*

Laboratory for Information and Inference Systems (LIONS)  
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2024)

**lions@epfl**

**aws**



**swisscom**

**HASLERSTIFTUNG**

**SDSC**  
ZEISS

**FN**  
FONDS NATIONAL SUISSE  
DEUTSCHE FEDERATION  
FONDO NAZIONALE SVIZZERO  
SWISS NATIONAL SCIENCE FOUNDATION



**EPFL**

# License Information for Mathematics of Data Slides

- ▶ This work is released under a [Creative Commons License](#) with the following terms:
- ▶ **Attribution**
  - ▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- ▶ **Non-Commercial**
  - ▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- ▶ **Share Alike**
  - ▶ The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ▶ [Full Text of the License](#)

## A simple *regression* model

$$b_i = h_{\mathbf{x}^{\natural}}(\mathbf{a}_i)$$

$\mathbf{x}^{\natural}$  : unknown function parameters  
 $\mathbf{a}_i$  : input  
 $b_i$  : response / output

Linear model:

$$\mathbf{b} = \mathbf{A} \mathbf{x}^{\natural} + \mathbf{w}$$

$n \times p$

$$\mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{x}^{\natural} \rangle + \mathbf{w}_i$$

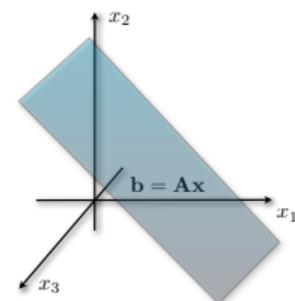
Applications: Compressive sensing, machine learning, theoretical computer science...

## A simple *regression* model and many *practical* questions

$$\mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{x}^\natural \rangle + \mathbf{w}_i$$

$\mathbf{x}^\natural$  : unknown function parameters  
 $\mathbf{a}_i$  : input  
 $\mathbf{b}_i$  : response / output  
 $\mathbf{w}_i$  : perturbations / noise

- Estimation: find  $\mathbf{x}^*$  to minimize  $\|\mathbf{x}^* - \mathbf{x}^\natural\|$
- Prediction: find  $\mathbf{x}^*$  to minimize  $L(\langle \mathbf{a}_i, \mathbf{x}^* \rangle, \langle \mathbf{a}_i, \mathbf{x}^\natural \rangle)$
- Decision: choose  $\mathbf{a}_i$  for estimation or prediction



A difficult estimation challenge when  $n < p$ :

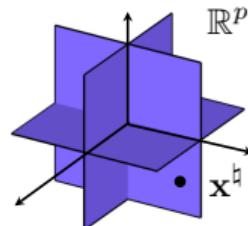
Nullspace (null) of  $\mathbf{A}$ :  $\mathbf{x}^\natural + \mathbf{v} \rightarrow \mathbf{b}, \quad \forall \mathbf{v} \in \text{null}(\mathbf{A})$

- Needle in a haystack: We need additional information on  $\mathbf{x}^\natural$ !

# A natural signal model

## Definition ( $s$ -sparse vector)

A vector  $\mathbf{x} \in \mathbb{R}^p$  is  $s$ -sparse if it has at most  $s$  non-zero entries.

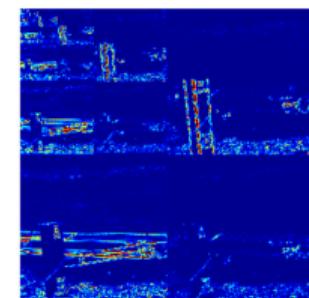


## Sparse representations

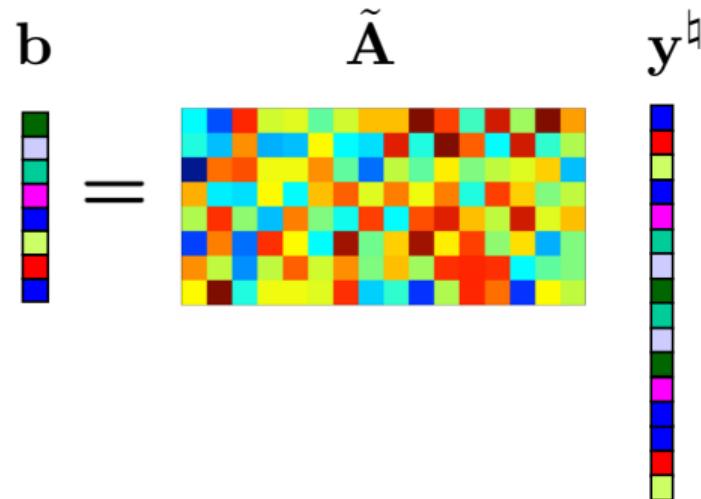
- o  $\mathbf{x}^\natural$ : *sparse* transform coefficients
- o Basis representations  $\Psi \in \mathbb{R}^{p \times p}$ 
  - *Wavelets*, DCT, ...
- o Frame representations  $\Psi \in \mathbb{R}^{m \times p}$ ,  $m > p$ 
  - Gabor, curvelets, shearlets, ...
- o Other *dictionary* representations...

$$\mathbf{y}^\natural = \Psi \mathbf{x}^\natural$$

A diagram illustrating the sparse representation of a signal. On the left, a vertical vector  $\mathbf{y}^\natural$  is shown with only a few non-zero entries highlighted in various colors (red, green, blue, yellow). In the center, an equals sign is followed by a matrix  $\Psi$  with a block-diagonal structure, representing the basis or frame. On the right, a vertical vector  $\mathbf{x}^\natural$  is shown with only a few non-zero entries, representing the sparse transform coefficients.



# Sparse representations strike back!

$$\mathbf{b} = \tilde{\mathbf{A}} \mathbf{y}^\natural$$


o  $\mathbf{b} \in \mathbb{R}^n$ ,  $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times p}$ , and  $n < p$

## Sparse representations strike back!

$$\mathbf{b} = \tilde{\mathbf{A}} \Psi \mathbf{x}^\natural$$

- $\mathbf{b} \in \mathbb{R}^n$ ,  $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times p}$ , and  $n < p$
- $\Psi \in \mathbb{R}^{p \times p}$ ,  $\mathbf{x}^\natural \in \mathbb{R}^p$ , and  $\|\mathbf{x}^\natural\|_0 \leq s < n$

## Sparse representations strike back!



- $\mathbf{b} \in \mathbb{R}^n$ ,  $\mathbf{A} \in \mathbb{R}^{n \times p}$ , and  $\mathbf{x}^h \in \mathbb{R}^p$ , and  $\|\mathbf{x}^h\|_0 \leq s < n < p$

## Sparse representations strike back!

$$\mathbf{b} = \mathbf{A} \mathbf{x}^\natural$$
$$n \times 1 \quad n \times s \quad s \times 1$$

**Observations:**

- The matrix  $\mathbf{A}$  effectively becomes *overcomplete*.
- We could solve for  $\mathbf{x}^\natural$  if we knew *the location of the non-zero entries of  $\mathbf{x}^\natural$* .

## Enter sparsity

A combinatorial approach for estimating  $\mathbf{x}^\natural$  from  $\mathbf{b} = \mathbf{A}\mathbf{x}^\natural + \mathbf{w}$

We may consider the estimator with the least number of non-zero entries. That is,

$$\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \{ \|\mathbf{x}\|_0 : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \leq \kappa \} \quad (\mathcal{P}_0)$$

with some  $\kappa \geq 0$ . If  $\kappa = \|\mathbf{w}\|_2$ , then  $\mathbf{x}^\natural$  is a feasible solution.

## Enter sparsity

A combinatorial approach for estimating  $\mathbf{x}^\natural$  from  $\mathbf{b} = \mathbf{A}\mathbf{x}^\natural + \mathbf{w}$

We may consider the estimator with the least number of non-zero entries. That is,

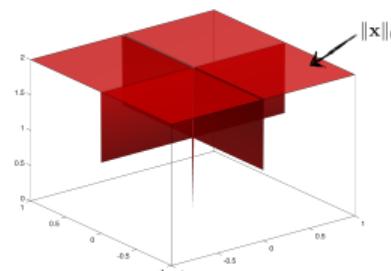
$$\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \{ \|\mathbf{x}\|_0 : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \leq \kappa \} \quad (\mathcal{P}_0)$$

with some  $\kappa \geq 0$ . If  $\kappa = \|\mathbf{w}\|_2$ , then  $\mathbf{x}^\natural$  is a feasible solution.

- $\mathcal{P}_0$  has the following characteristics:

- ▶ sample complexity:  $\mathcal{O}(s)$
- ▶ computational effort: NP-Hard
- ▶ stability: No

$\|\mathbf{x}\|_0$  over the unit  $\ell_\infty$ -ball



## Enter sparsity

A combinatorial approach for estimating  $\mathbf{x}^\natural$  from  $\mathbf{b} = \mathbf{A}\mathbf{x}^\natural + \mathbf{w}$

We may consider the estimator with the least number of non-zero entries. That is,

$$\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \{ \|\mathbf{x}\|_0 : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \leq \kappa \} \quad (\mathcal{P}_0)$$

with some  $\kappa \geq 0$ . If  $\kappa = \|\mathbf{w}\|_2$ , then  $\mathbf{x}^\natural$  is a feasible solution.

- **$\mathcal{P}_0$  has the following characteristics:**

- ▶ sample complexity:  $\mathcal{O}(s)$
- ▶ computational effort: NP-Hard
- ▶ stability: No

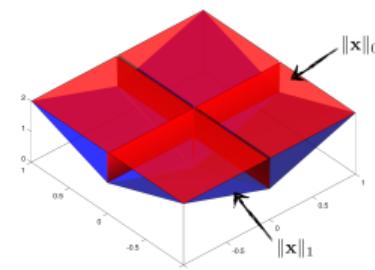
$\|\mathbf{x}\|_1$  is the **convex envelope** of  $\|\mathbf{x}\|_0$

- **Tightest convex relaxation:**

- ▶  $\|\mathbf{x}\|_0^{**}$  is the **biconjugate**
- ▶ i.e., Fenchel conjugate of Fenchel conjugate

- **Fenchel conjugate:**

- ▶  $f^*(\mathbf{y}) := \sup_{\mathbf{x} \in \text{dom}(f)} \mathbf{x}^T \mathbf{y} - f(\mathbf{x})$ .



**A technicality:** Restrict  $\mathbf{x}^\natural \in [-1, 1]^p$ .

## The role of convexity

A convex candidate solution for  $\mathbf{b} = \mathbf{Ax}^\ddagger + \mathbf{w}$

$$\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \{ \|\mathbf{x}\|_1 : \|\mathbf{b} - \mathbf{Ax}\|_2 \leq \|\mathbf{w}\|_2, \|\mathbf{x}\|_\infty \leq 1 \}. \quad (\text{SOCP})$$

### Theorem (A **model** recovery guarantee [8])

Let  $\mathbf{A} \in \mathbb{R}^{n \times p}$  be a matrix of i.i.d. Gaussian random variables with zero mean and variances  $1/n$ . For any  $t > 0$  with probability at least  $1 - 6 \exp(-t^2/26)$ , we have

$$\|\mathbf{x}^* - \mathbf{x}^\ddagger\|_2 \leq \left[ \frac{2 \sqrt{2s \log(\frac{p}{s}) + \frac{5}{4}s}}{\sqrt{n} - \sqrt{2s \log(\frac{p}{s}) + \frac{5}{4}s} - t} \right] \|\mathbf{w}\|_2 := \varepsilon, \quad \text{when } \|\mathbf{x}^\ddagger\|_0 \leq s.$$

**Observations:**

- perfect recovery (i.e.,  $\varepsilon = 0$ ) with  $n \geq 2s \log(\frac{p}{s}) + \frac{5}{4}s$  whp when  $\mathbf{w} = 0$ .
- $\varepsilon$ -accurate solution in  $k = \mathcal{O}\left(\sqrt{2p+1} \log(\frac{1}{\varepsilon})\right)$  iterations via IPM with a total complexity of  $\mathcal{O}(n^2 p^{1.5} \log(\frac{1}{\varepsilon}))$  with each iteration requiring the solution of a structured  $n \times 2p$  linear system.
- robust to noise.

# A Time-Data conundrum — I

## A computational dogma

Running time of a learning algorithm increases with the size of the data.

# A Time-Data conundrum — I

## A computational dogma

Running time of a learning algorithm increases with the size of the data.

- Misaligned goals in the statistical and optimization disciplines

| Discipline   | Goal                                    | Metric                                                   |
|--------------|-----------------------------------------|----------------------------------------------------------|
| Optimization | reaching numerical $\epsilon$ -accuracy | $\ \mathbf{x}^k - \mathbf{x}^*\  \leq \epsilon$          |
| Statistics   | learning $\varepsilon$ -accurate model  | $\ \mathbf{x}^* - \mathbf{x}^\dagger\  \leq \varepsilon$ |

- Main issue:  $\epsilon$  and  $\varepsilon$  are NOT the same but should be treated jointly!

## A Time-Data conundrum — II

### A stylized formalization of the time-data tradeoff

The goals of optimization and statistical modeling are tightly connected:

$$\underbrace{\|\mathbf{x}^k - \mathbf{x}^\natural\|}_{\text{learning quality}} \leq \underbrace{\|\mathbf{x}^k - \mathbf{x}^*\|}_{\epsilon: \text{needs "time" } t(k)} + \underbrace{\|\mathbf{x}^* - \mathbf{x}^\natural\|}_{\varepsilon: \text{needs "data" } n},$$

$\mathbf{x}^\natural$ :

true model in  $\mathbb{R}^p$

$\mathbf{x}^*$ :

statistical model estimate

$\mathbf{x}^k$ :

numerical solution at iteration  $k$

- As the number of data samples  $n$  increases with a fixed optimization formulation,

$$\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \{ \|\mathbf{x}\|_1 : \|\mathbf{b} - \mathbf{Ax}\|_2 \leq \|\mathbf{w}\|_2, \|\mathbf{x}\|_\infty \leq 1 \}$$

► numerical methods take longer time  $t$  to reach  $\epsilon$ -accuracy

► e.g., per-iteration time to solve an  $n \times 2p$  linear system

► statistical model estimates  $\varepsilon$  become more precise when  $\|\mathbf{w}\|_2 = \mathcal{O}(\sqrt{n})$

$$\varepsilon = \frac{2 \sqrt{2s \log(\frac{p}{s}) + \frac{5}{4}s}}{\sqrt{n} - \sqrt{2s \log(\frac{p}{s}) + \frac{5}{4}s} - t} \|\mathbf{w}\|_2, \text{ with probability } 1 - 6\exp(-t^2/26).$$

## A Time-Data conundrum — II

### A stylized formalization of the time-data tradeoff

The goals of optimization and statistical modeling are tightly connected:

$$\underbrace{\|\mathbf{x}^k - \mathbf{x}^\natural\|}_{\leq \bar{\varepsilon}(t(k), n)} \leq \underbrace{\|\mathbf{x}^k - \mathbf{x}^*\|}_{\epsilon: \text{needs "time" } t(k)} + \underbrace{\|\mathbf{x}^* - \mathbf{x}^\natural\|}_{\varepsilon: \text{needs "data" } n},$$

$\mathbf{x}^\natural$ :

true model in  $\mathbb{R}^p$

$\mathbf{x}^*$ :

statistical model estimate

$\mathbf{x}^k$ :

numerical solution at iteration  $k$

$\bar{\varepsilon}(t(k), n)$ :

actual learning quality at time  $t(k)$  with  $n$  samples

- As the number of data samples  $n$  increases with a fixed optimization formulation,

$$\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \{ \|\mathbf{x}\|_1 : \|\mathbf{b} - \mathbf{Ax}\|_2 \leq \|\mathbf{w}\|_2, \|\mathbf{x}\|_\infty \leq 1 \}$$

► numerical methods take longer time  $t$  to reach  $\epsilon$ -accuracy

► e.g., per-iteration time to solve an  $n \times 2p$  linear system

► statistical model estimates  $\varepsilon$  become more precise when  $\|\mathbf{w}\|_2 = \mathcal{O}(\sqrt{n})$

$$\varepsilon = \frac{2 \sqrt{2s \log(\frac{p}{s}) + \frac{5}{4}s}}{\sqrt{n} - \sqrt{2s \log(\frac{p}{s}) + \frac{5}{4}s} - t} \|\mathbf{w}\|_2, \text{ with probability } 1 - 6\exp(-t^2/26).$$

**“Time” effort has significant diminishing returns on  $\varepsilon$  in the underdetermined case\*** (cf., [6, 3, 9, 5, 4])

\* “Data” effort also exhibits a similar behavior in the overdetermined case when a signal prior is used due to noise!

# Data as a computational resource

## A stylized formalization of the time-data tradeoff

The goals of optimization and statistical modeling are tightly connected:

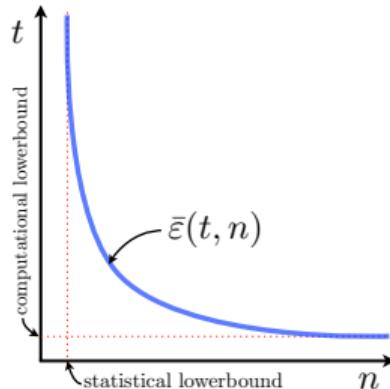
$$\underbrace{\|x^{k(t)} - x^{\natural}\|}_{\leq \bar{\epsilon}(t, n)} \leq \underbrace{\|x^{k(t)} - x^*\|}_{\epsilon: \text{needs "time" } t} + \underbrace{\|x^* - x^{\natural}\|}_{\varepsilon: \text{needs "data" } n},$$

$x^{\natural}$ : true model in  $\mathbb{R}^p$

$\bar{\epsilon}(t, n)$ : actual model precision at time  $t$  with  $n$  samples

Rest of the lecture:

- o estimator formulation and sample complexity
- o a “continuous” time-data tradeoff
- o a different, algorithmic tradeoff with SGD



## Sample complexity analysis

### Convex optimization formulation for the estimator

$$\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \{f(\mathbf{x}) : \mathbf{b} = \mathbf{A}\mathbf{x}\},$$

where  $f : \mathbb{R}^p \rightarrow \mathbb{R} \cup \{-\infty, \infty\}$  is a convex function.

### Sample complexity

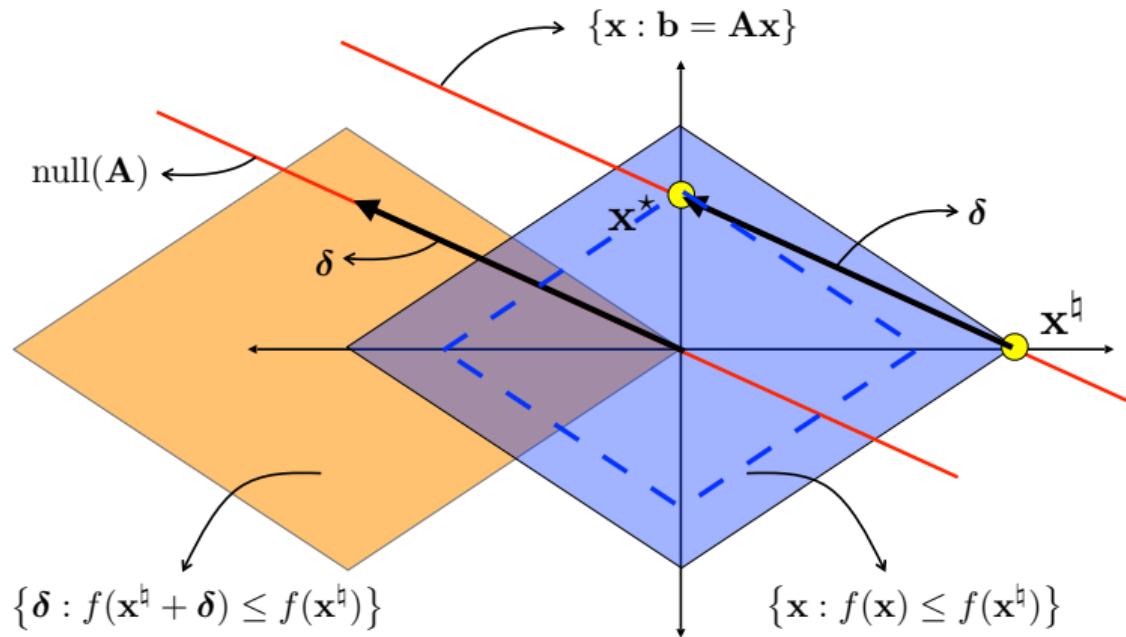
Assume that  $A \in \mathbb{R}^{n \times p}$  is a matrix of independent identically distributed (i.i.d.) Gaussian random variables.

What is the minimum number of samples  $n$  such that  $\mathbf{x}^* = \mathbf{x}^\dagger$  with high probability?

## Characterization of the error vector

$$\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \{f(\mathbf{x}) : \mathbf{b} = \mathbf{A}\mathbf{x}\}$$

Define the error vector  $\delta := \mathbf{x}^* - \mathbf{x}^\natural$ .

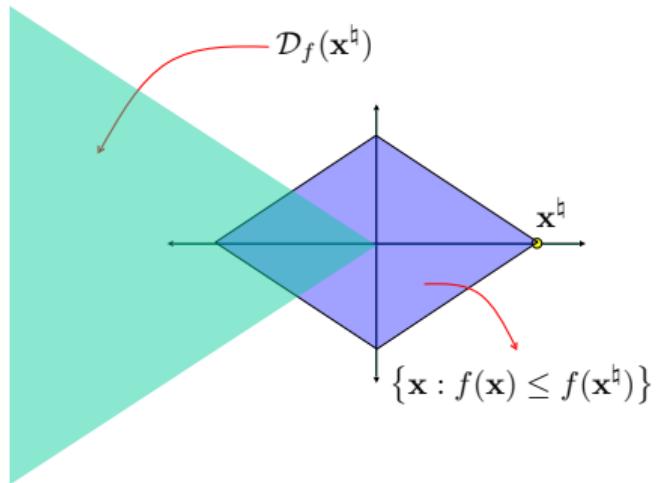


## Descent cone

### Definition (Descent cone)

Let  $f : \mathbb{R}^p \rightarrow \mathbb{R} \cup \{-\infty, \infty\}$  be a proper lower-semicontinuous function. The **descent cone** of  $f$  at  $\mathbf{x}^\natural$  is defined as

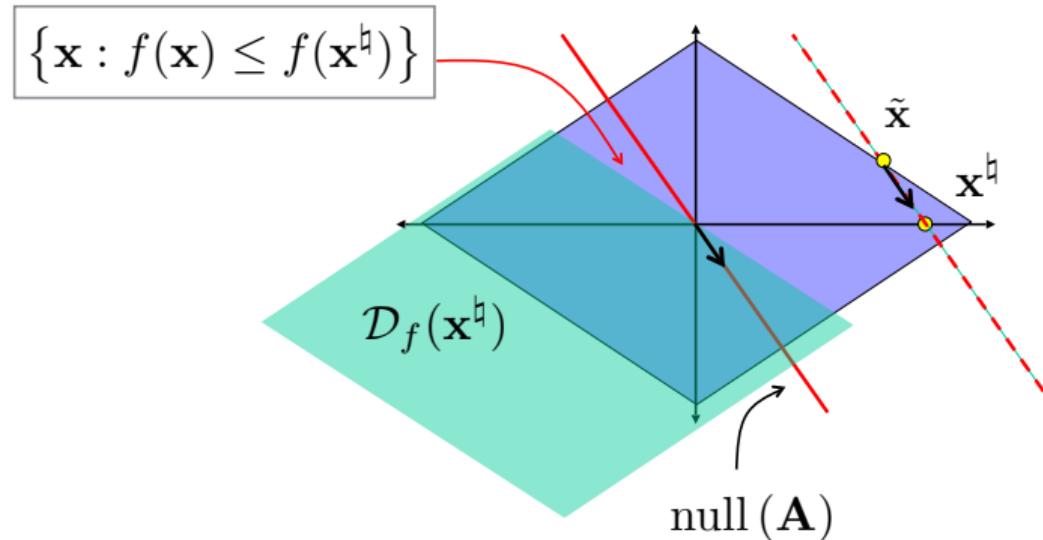
$$\mathcal{D}_f(\mathbf{x}^\natural) := \text{cone} \left( \left\{ \delta : f(\mathbf{x}^\natural + \delta) \leq f(\mathbf{x}^\natural) \right\} \right).$$



## Condition for exact recovery in the *noiseless* case

### Proposition (Condition for exact recovery)

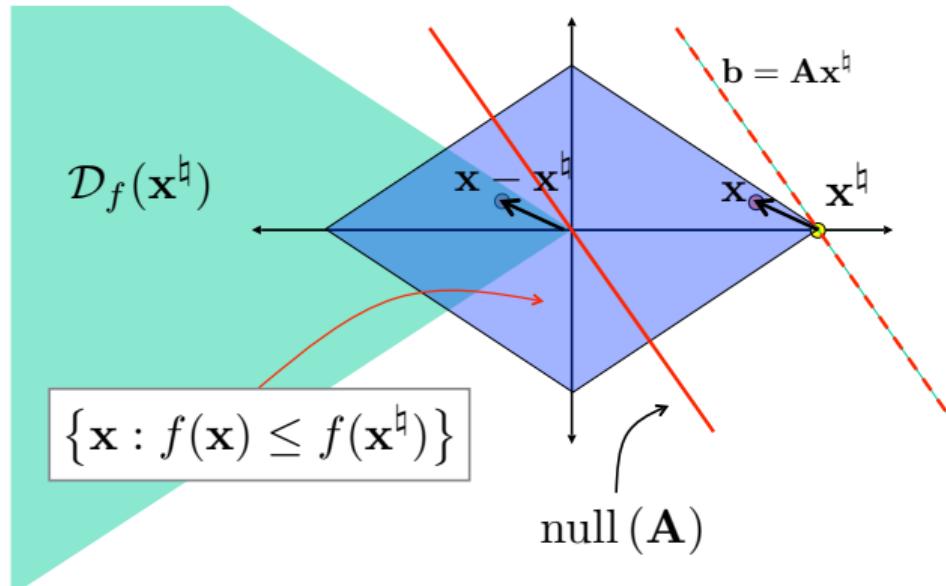
We have successful recovery, i.e.,  $\delta := \mathbf{x}^* - \mathbf{x}^\dagger = 0$  with  $\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \{f(\mathbf{x}) : \mathbf{b} = \mathbf{A}\mathbf{x}\}$ , if and only if  $\text{null}(\mathbf{A}) \cap \mathcal{D}_f(\mathbf{x}^\dagger) = \{0\}$ .



## Condition for exact recovery in the *noiseless* case

### Proposition (Condition for exact recovery)

We have successful recovery, i.e.,  $\delta := \mathbf{x}^* - \mathbf{x}^\natural = 0$  with  $\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \{f(\mathbf{x}) : \mathbf{b} = \mathbf{A}\mathbf{x}\}$ , if and only if  $\text{null}(\mathbf{A}) \cap \mathcal{D}_f(\mathbf{x}^\natural) = \{0\}$ .



## Statistical dimension and approximate kinematic formula

Now we have

$$\mathbb{P} \left\{ \mathbf{x}^* = \mathbf{x}^\natural \right\} = \mathbb{P} \left\{ \text{null}(\mathbf{A}) \cap \mathcal{D}_f(\mathbf{x}^\natural) = \{0\} \right\}.$$

### Definition (Statistical dimension [1]<sup>1</sup>)

Let  $\mathcal{C} \subseteq \mathbb{R}^p$  be a closed convex cone. The *statistical dimension* of  $\mathcal{C}$  is defined as

$$d(\mathcal{C}) := \mathbb{E} \left[ \|\text{proj}_{\mathcal{C}}(\mathbf{g})\|_2^2 \right].$$

### Theorem (Approximate kinematic formula [1])

Let  $A \in \mathbb{R}^{n \times p}$ ,  $n < p$ , be a matrix of i.i.d. standard Gaussian random variables, and let  $\mathcal{C} \subseteq \mathbb{R}^p$  be a closed convex cone. Let  $\eta \in (0, 1)$ . Then

$$\begin{aligned} n \geq d(\mathcal{C}) + c_\eta \sqrt{p} &\Rightarrow \mathbb{P} \{ \text{null}(\mathbf{A}) \cap \mathcal{C} = \{0\} \} \geq 1 - \eta; \\ n \leq d(\mathcal{C}) - c_\eta \sqrt{p} &\Rightarrow \mathbb{P} \{ \text{null}(\mathbf{A}) \cap \mathcal{C} = \{0\} \} \leq \eta, \end{aligned}$$

where  $c_\eta := \sqrt{8 \log(4/\eta)}$ .

---

<sup>1</sup>The statistical dimension is closely related to the Gaussian complexity [2], Gaussian width [7], and Gaussian squared complexity [6].

# Probability of exact recovery

## Corollary

For any  $\eta \in (0, 1)$ ,

$$\begin{aligned} n \geq d(\mathcal{D}_f(\mathbf{x}^\natural)) + c_\eta \sqrt{p} &\Rightarrow \mathbb{P}\{\mathbf{x}^* = \mathbf{x}^\natural\} \geq 1 - \eta; \\ n \leq d(\mathcal{D}_f(\mathbf{x}^\natural)) - c_\eta \sqrt{p} &\Rightarrow \mathbb{P}\{\mathbf{x}^* = \mathbf{x}^\natural\} \leq \eta, \end{aligned}$$

where  $c_\eta := \sqrt{8 \log(4/\eta)}$ .

- There is a *phase transition* at  $n \approx d(\mathcal{D}_f(\mathbf{x}^\natural))$ .

## Examples ([1])

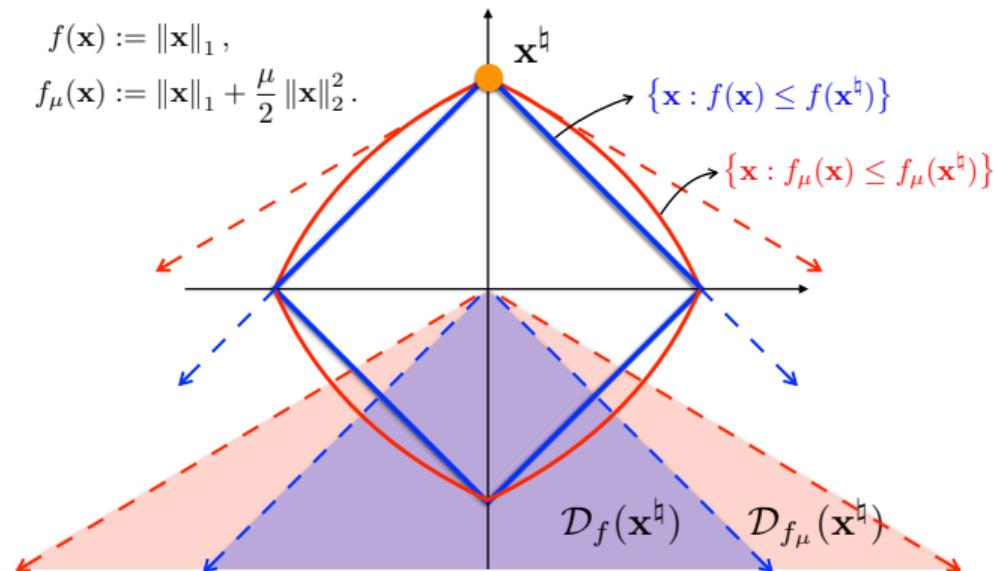
- Let  $f(\mathbf{x}) := \|\mathbf{x}\|_1$ , and let  $\mathbf{x}^\natural \in \mathbb{R}^p$  be  $s$ -sparse. Then  $d(\mathcal{D}_f(\mathbf{x}^\natural)) \leq 2s \log(p/s) + (5/4)s$ .
- Let  $f(\mathbf{x}) := \|\mathbf{X}\|_*$ , and let  $\mathbf{X}^\natural \in \mathbb{R}^{p \times p}$  of rank  $r$ . Then  $d(\mathcal{D}_f(\mathbf{x}^\natural)) \leq 3r(2p - r)$ .

## Smoothing increases the statistical dimension

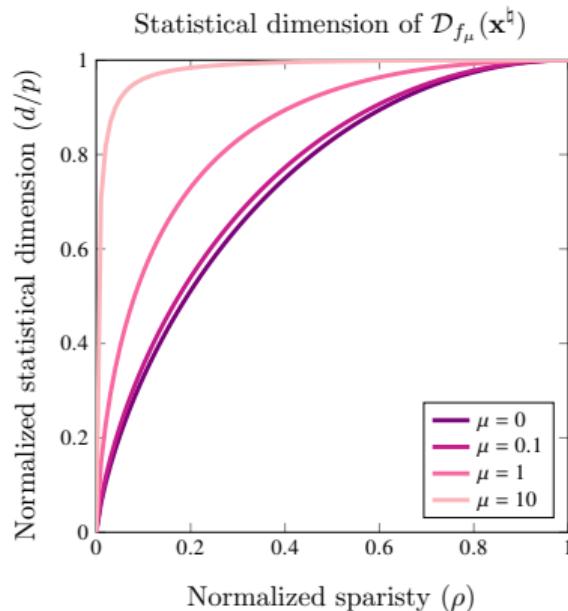
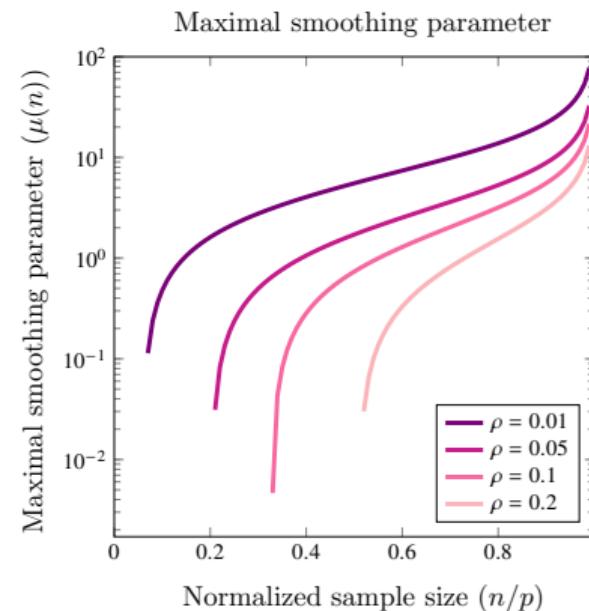
### Key properties of the statistical dimension [1]

- The statistical dimension is invariant under unitary transformations (rotations).
- Let  $\mathcal{C}_1$  and  $\mathcal{C}_2$  be closed convex cones. If  $\mathcal{C}_1 \subseteq \mathcal{C}_2$ , then  $d(\mathcal{C}_1) \leq d(\mathcal{C}_2)$ .

The larger the statistical dimension is, the more number of observations is required.



## Numerical results for the statistical dimension and $\mu(n)$



## Smoothing decreases the computational cost

- Consider the estimator,

$$\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f_\mu(\mathbf{x}) : \mathbf{b} = \mathbf{A}\mathbf{x}, \|\mathbf{x}\|_\infty \leq \|\mathbf{x}^\natural\|_\infty \right\}, \quad \mu \in [0, \infty).$$

### Proposition

Let  $\mu > 0$  and  $f(\mathbf{x}) = \|\mathbf{x}\|_1$ . Consider solving (1) with a primal-dual method as in [4, 5]. The output after the  $k$ -th iteration,  $\mathbf{x}^k$ , satisfies

$$\|\mathbf{x}^* - \mathbf{x}^k\|_2 \leq \frac{4p\kappa(\mathbf{A}) \left[ \rho(1 + \mu \|\mathbf{x}^*\|_\infty)^2 + (1 - \rho) \right]}{\mu k} \propto \frac{1}{\mu k} \Big|_{\rho \ll 1},$$

where  $\rho := s/p$ ,  $s$  being the number of non-zero entries in  $\mathbf{x}^*$ , and  $\kappa(\mathbf{A})$  denotes the restricted condition number of  $\mathbf{A}$ .

**Observations:**

- When  $\rho \ll 1$ , the number of iterations  $k$  to achieve the required precision decreases.

- In fact, we need  $1/(\mu\varepsilon)$  iterations to have an error bound  $\|\mathbf{x}^* - \mathbf{x}^k\|_2 \leq \varepsilon$  for a fixed  $\varepsilon > 0$ .

## Time-data tradeoff

- Define the maximal smoothing parameter

$$\mu(n) := \arg \max_{\mu > 0} \left\{ \mu : d\left(\mathcal{D}_{f_\mu}(\mathbf{x}^\natural)\right) \leq n \right\}.$$

- Consider the “conservative” estimator in probability,

$$\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f_\mu(\mathbf{x}) \mid_{\mu=\frac{1}{4}\mu(n)} : \mathbf{b} = \mathbf{A}\mathbf{x} \right\}.$$

### Corollary

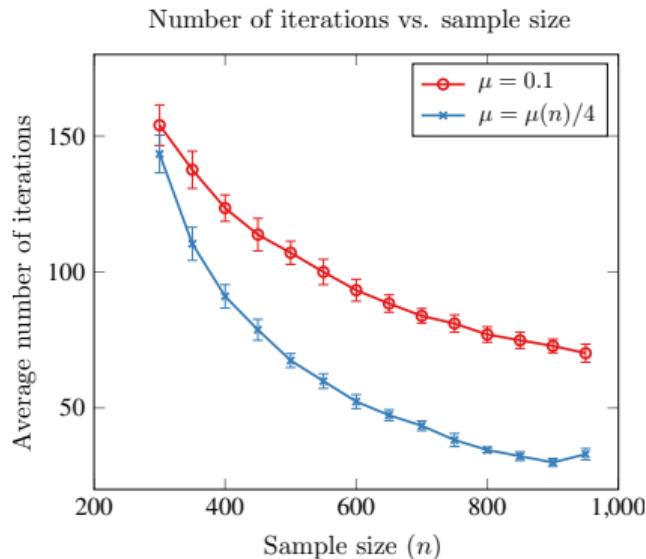
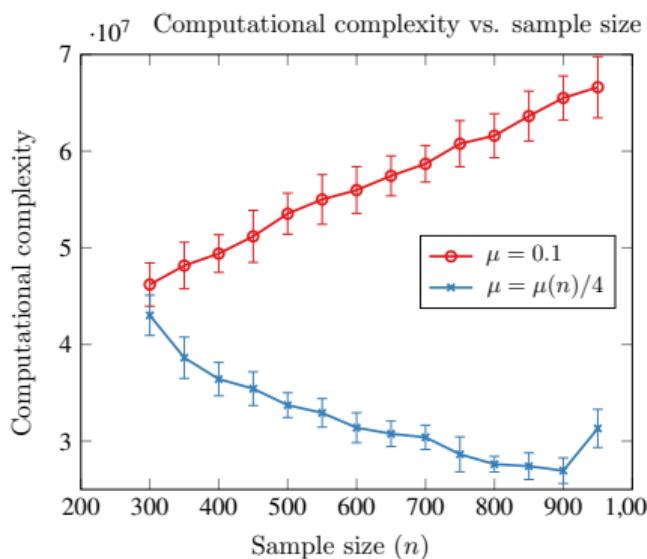
Let  $\rho := s/p \ll 1$ . Then we have, with high probability,  $\mathbf{x}^* = \mathbf{x}^\natural$ , and

$$\|\mathbf{x}^\natural - \mathbf{x}^k\|_2 \propto \frac{1}{\mu(n)k}.$$

Therefore, to achieve the error bound,  $\|\mathbf{x}^\natural - \mathbf{x}^k\|_2 \leq \varepsilon$  for a fixed  $\varepsilon > 0$ , it suffices to choose

$$k = O\left(\frac{1}{\mu(n)}\right).$$

## A numerical result for the time-data tradeoff



## References I

[1] Dennis Amelunxen, Martin Lotz, Michael B. McCoy, and Joel A. Tropp.  
Living on the edge: Phase transitions in convex programs with random data.  
*Information and Inference*, 3:224–294, 2014.  
arXiv:1303.6672v2 [cs.IT].  
(Cited on pages 24, 25, and 26.)

[2] Peter L. Bartlett and Shahar Mendelson.  
Rademacher and Gaussian complexities: Risk bounds and structural results.  
*J. Mach. Learn. Res.*, 3, 2002.  
(Cited on page 24.)

[3] Léon Bottou and Olivier Bousquet.  
The tradeoffs of large scale learning.  
In *Adv. Neur. Inf. Proc. Sys. (NIPS)*, 2007.  
(Cited on pages 16 and 17.)

[4] John J. Bruer, Joel A. Tropp, Volkan Cevher, and Stephen Becker.  
Time–data tradeoffs by aggressive smoothing.  
*Advances in Neural Information Processing Systems*, 27, 2014.  
(Cited on pages 16, 17, and 28.)

## References **II**

[5] John J Bruer, Joel A Tropp, Volkan Cevher, and Stephen R Becker.  
Designing statistical estimators that balance sample size, risk, and computational cost.  
*IEEE Journal of Selected Topics in Signal Processing*, 9(4):612–624, 2015.  
(Cited on pages 16, 17, and 28.)

[6] Venkat Chandrasekaran and Michael I. Jordan.  
Computational and statistical tradeoffs via convex relaxation.  
*Proc. Nat. Acad. Sci.*, 110(13):E1181–E1190, 2013.  
(Cited on pages 16, 17, and 24.)

[7] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky.  
The convex geometry of linear inverse problems.  
*Found. Comp. Math.*, 12:805–849, 2012.  
(Cited on page 24.)

[8] Samet Oymak, Christos Thrampoulidis, and Babak Hassibi.  
The squared-error of generalized lasso: A precise analysis.  
In *2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton)*, pages 1002–1009. IEEE, 2013.  
(Cited on page 13.)

## References III

[9] Shai Shalev-Shwartz and Nathan Srebro.  
Svm optimization: inverse dependence on training set size.  
In *Proceedings of the 25th international conference on Machine learning*, pages 928–935, 2008.  
(Cited on pages 16 and 17.)